1.基础网络
ImageNet
net | year | detail | download | description |
---|---|---|---|---|
LetNet | IEEE 1998 |
Gradient-Based Learning Applied to Document Recognition | CNN开山之作,手写体识别。 | |
AlexNet | ILSVRC 2012 |
ImageNet Classification with Deep Convolutional Neural Networks | ILSVRC 2012冠军,促进CNN发展。 | |
VGGNet | ICLR 2015 |
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION | 创建非常深的网络。 | |
Inception | CVPR 2015 |
Going Deeper with Convolutions | google设计,2014年的ImageNet冠军。 | |
ResNet | CVPR 2015 |
Deep Residual Learning for Image Recognition | 连接前后信息,可以训练更深的网络。 | |
DenseNet | CVPR 2017 |
Densely Connected Convolutional Networks | 与ResNet类似,所有层更加稠密的联系。 | |
MobileNets | 2017 |
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications | ||
DilatedConv | ICLR 2016 |
MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS |
RNN
-
** `` ** pdf
Unsupervised Learning
-
** `` ** pdf
GAN
-
GAN 2014
Generative Adversarial Nets pdf 创新性思维,通过2个网络相互对抗的形式来训练,分别得到鉴别网络和生成网络。 LSGANs 2016
Least Squares Generative Adversarial Networks pdf WGAN 2017
Wasserstein GAN pdf ** `` ** pdf
Reinforcement Learning
-
** `` ** pdf
2.优化
Model
-
Dropout 2014
Dropout: A Simple Way to Prevent Neural Networks from Overfitting pdf Batch Normalization 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift pdf Attention ICLR 2015
Neural Machine Translation by Jointly Learning to Align and Translate pdf 首次提出Attention,用于及其翻译,展示了attention对源语目标的对其效果,解释深度模型到底学到了什么。由于后续提出的概念,这个attention被称为soft/global attention。 hard attention相关 ICML 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention pdf 提出hard/soft attention的概念,在图像上的应用。 local attention EMNLP 2015
Effective Approaches to Attention-based Neural Machine Translation pdf 提出global/local attention的概念,对Attention的变化,其中multiplicative attention结构被广泛使用。 self-attention `` Hierarchical Attention Networks for Document Classification pdf transformer 2017
Attention Is All You Need pdf google提出的Transformer结构,完全摒弃递归结构,依赖注意力机制,可并行。(以往nlp中大量使用encoder-decoder结构,由于前后隐藏状态的依赖性,无法并行计算。) ** `` ** pdf
Optimization
Loss Function
-
** `` ** pdf
?
-
** `` ** pdf
3.应用
NLP
-
** `` ** pdf
Object Detection
-
- 2013
Deep Neural Networks for Object Detection pdf RCNN CVPR 2014
Rich feature hierarchies for accurate object detection and semantic segmentation pdf SPPNet 2014
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition pdf Fast R-CNN IEEE 2015
Fast R-CNN pdf Faster R-CNN 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks pdf YOLO 2015
You Only Look Once: Unified, Real-Time Object Detection pdf SSD 2015
SSD: Single Shot MultiBox Detector pdf R-FCN 2016
R-FCN: Object Detection via Region-based Fully Convolutional Networks pdf Mask R-CNN 2017
Mask R-CNN pdf ** `` ** pdf
face
-
** `` ** pdf
VQA
-
** `` ** pdf